SHORT PAPER

A simple and efficient method for the *N*-nitrosation of secondary amines with NaNO₂–Ac₂O under mild conditions

Jian-Ye Hou^a, Yu-Lu Wang^{a*} and Jin-Ye Wang^b

^aCollege of Chemical and Environmental Science, Henan Normal University, Xinxiang, 453002, P.R. China

^{a*}The Key Laboratory of Environmental Science and Technology of High Education of Henan Province, P.R. China

^bShanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, P.R. China

Secondary amines can be easily converted into their corresponding nitroso derivations using NaNO₂-Ac₂O as a nitrosating agent in dichloromethane at room temperature with high yields.

Keywords: N-nitrosation, secondary amines, NaNO₂-Ac₂O

N-Nitrosation of secondary amines is very important in organic synthesis. Some nitroso compounds are widely produced in industry. Various nitrosating agents have been reported, such as, the most general, nitrous acid, generated from sodium nitrite and mineral acid in water or in mixed alcohol-water solvents,¹ nitrosyl salts,² alkyl nitrites,³ dinitrogen tetroxide,⁴ oxyhyponitrite,⁵ Fremy's salt,⁶ *N*-haloamides and sodium nitrite under phase-transfer conditions,⁷ bis(triphenylphosphine) ammonium nitrite,⁸ solid acids (*i.e.* oxalic acid dihydrate,⁹ inorganic acidic salts¹⁰ and hydrolysable chloride salts¹¹) and sodium nitrite, [NO^{+.} Crown[.] H (NO₃)₂⁻],¹² and silica chloride/ NaNO₂.¹³

We wished to develop a new nitrosating agent. In the course of our study on the oxidation of aryl substituted semicarbazides to aryl azo compounds with NaNO₂–Ac₂O,¹⁴ we found the generation of NO⁺ in this oxidation system. It is well known that the nitrosating key is the generation of NO⁺ in the nitrosating reaction. Therefore, we evaluated NaNO₂–Ac₂O as the nitrosation agent for secondary amines. In our experiment, we selected Ph₂NH as a model. The optimum molar ratio was sought by using Ph₂NH (1 mmol) with different molar ratios of NaNO₂: Ac₂O. The optimum molar ratio (NaNO₂: Ac₂O) (3: 3) is required for the most excellent yields. The results are summarised in Table 1.

All reactions were performed smoothly in dichloromethane at room temperature (Scheme 1) and completed with excellent yields. The results are summarised in Table 2.

To conclude, we recommend this simple, efficient method for the *N*-nitrosation of secondary amines under mild conditions with excellent yields. In all cases, reactions can be monitored by TLC. We believe that the present methodology is an important addition to existing methodology.

Experimental

Melting points and boiling points were measured using uncorrected temperature gauges. Yields refer to isolated pure products. The nitrosation products were characterised by comparison of their melting or boiling points, Anal. Calcd and spectral (IR, ¹H NMR).

A mixture of secondary amine (1 mmol), acetic anhydride (0.306 g, 3 mmol) and NaNO₂(0.207 g, 3 mmol) in dichloromethane (10 ml) was vigorously stirred at room temperature. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was filtered, the undesired precipitates were removed and

* To receive any correspondence. E-mail: wangyulu_youji01@sina.com

Table 1 N-Nitrosation of Ph_2NH with different molar ratio of $NaNO_2-Ac_2O$

Entry	Ph ₂ NH : NaNO ₂ :Ac ₂ O			Time/h	Yield/%
1	1	1	1	1.5	45
2	1	1.5	1.5	1.5	55
3	1	2	2	1.5	90
4	1	2.5	2.5	1.5	95
5	1	3	3	1.5	98
6	1	3.5	3.5	1.5	96

$$R_1R_2NH \xrightarrow{NaNO_2 - Ac_2O} R_1R_2N-N=C$$

Scheme 1

 Table 2
 N-Nitrosation of secondary amines using

 NaNO₂-Ac₂O as the nitrosating agent

Entry	R ₁	R ₂	Time/h	Yield/%
1	Me	Me	1	91
2	Et	Et	1	94
3	<i>iso</i> -Pr	<i>iso</i> -Pr	1.5	93
4	Butyl	Butyl	1.5	94
5	$\overline{\zeta}$	7	1	96
6	Ph	Ph	1.5	98
7	Ph	COCH ₃	2	86
8	Ph	Me	1	89

washed with dichloromethane (2×8 ml). The solvent was evaporated from the combined dichloromethane solutions and the *N*-nitroso compounds were obtained. If further purification is needed, column chromatography on silica gel [eluent: acetone/petroleum ether (10:90)] gives pure *N*-nitroso compounds.

Data on products: N-Nitrosodimethylamine: Yellow liquid, b.p. 154° C/774mm (Lit.¹⁵ 153°C /774mm); IR (KBr)v:2970, 1440, 1305, 1048; ¹H NMR (CDCl₃) δ :2.93 (s, 3H, CH₃), 3.69 (s, 3H, CH₃); Anal. Calcd for C₂H₆N₂O:C, 32.41;H, 8.16; N, 37.83. Found: C, 32.36; H, 8.23; N, 37.88.

N-Nitrosodiethylamine: Yellow oil, b.p. 175–177°C (Lit.¹⁵ 177°C); IR (KBr)v: 2973, 1451, 1223, 1058; ¹H NMR (CDCl₃) δ : 1.12 (t, 3H, CH₃), 1.44 (t, 3H, CH₃), 3.61 (q, 2H, CH₂), 4.13 (q, 2H, CH₂); Anal. Calcd for C₄H₁₀N₂O: C, 47.02; H, 9.87; N, 27.43. Found: C, 47.12; H, 9.80; N, 27.46.

N-Nitrosodiisopropylamine: White crystal, m.p. 47–48°C (Lit.¹⁵ 48°C); IR (KBr)v: 2962, 1466, 1382, 1120; ¹H NMR (CDCl₃) δ : 1.13(d, 6H, 2CH₃), 1.51(d, 6H, 2CH₃), 2.8-3.4 (m, 2H, 2CH); Anal.

[†] This is a Short Paper, there is therefore no corresponding material in L Cham. Base such (M)

J Chem. Research (M).

N-Nitrosodibutylamine: Yellow liquid, b.p. 103–104°C /8 mm (Lit.¹⁶ 104–105°C /8mm); IR (KBr)v: 2978, 1449, 1382, 1070; ¹H NMR (CDCl₃)δ: 0.92 (t, 6H, 2CH₃), 1.12–2.13 (m, 8H, 4CH₂), 3.58 (t, 2H, CH₂), 4.09 (t, 2H, CH₂); Anal. Calcd for C₈H₁₈N₂O: C, 60.70; H, 11.47; N, 17.71. Found: C, 60.10; H, 11.58; N, 17.68.

N-Nitrosopyrrolidine: Yellow oil, b.p. 213°C (Lit.¹⁵ 214°C); IR (KBr)v: 2983, 1445, 1305, 1202; ¹H NMR (CDCl₃) δ : 2.10 (m, 4H, 2CH₂), 3.51 (t, 2H, CH₂), 4.23 (t, 2H, CH₂); Anal. Calcd for C₄H₈N₂O: C, 47.96; H, 8.06; N, 27.99. Found: C, 47.86; H, 7.98; N, 28.12.

N-Nitrosodiphenylamine: Yellow crystal, m.p. 65–66°C (Lit.¹⁵ 66.5°C); IR (KBr)v: 3070, 1470, 1040, 748, 690; ¹H NMR (CDCl₃) δ : 7.02–7.56 (m, 10H, 2C₆H₅); Anal. Calcd for C₁₂H₁₀N₂O: C, 72.69; H, 5.09; N, 14.14. Found: C, 72.72; H, 5.02; N, 14.21.

N-Nitrosoacetanilide: Yellow needles, m.p. $51-52^{\circ}C$ (Lit.¹⁵ $51^{\circ}C$); IR (KBr)v: 3050, 2980, 1790, 1455, 760, 701; ¹H NMR (CDCl₃) δ : 2.06 (s, 3H, CH₃), 7.01–7.65 (m, 5H, C₆H₅); Anal. Calcd for C₈H₈N₂O₂: C, 58.51; H, 4.92; N, 17.07. Found: C, 58.45; H, 5.02; N, 17.14.

N-Methyl-N-nitrosoaniline: Yellow oil, b.p. 129° C /19 mm (Lit.¹⁵ 128–128.4°C /19mm); IR (KBr)v: 3070, 2973, 1595, 1450, 1091, 758, 704; ¹H NMR (CDCl₃) δ : 3.40 (s, 3H, CH₃), 7.18–7.55 (m, 5H, C₆H₅); Anal. Calcd for C₇H₈N₂O: C, 61.73; H, 5.92; N, 20.59. Found: C, 61.43; H, 6.01; N, 20.54.

Received 18 January 2003; accepted 4 July 2003 Paper 03/1739

References

1 (a) Vogels *Text Book of Practical Organic Chemistry* 4th. Ed, Longman, London and New York 1986; (b) R.L. Sheriner, T.L. Reynold, C. Fuson, D.Y. Curtin and T.C. Morrill. *The Systematic Identification of Organic Compounds* 6th. Ed. John Wiley and Sons, 1980, pp.220-223.

- 2 (a) G.A. Olah, Aldrichimica Acta. 1979, 12, 43; (b) H.S. Tasker and H.O. Jones, J. Chem. Soc. 1909, 95, 1910.
- 3 (a) H. Lecher and W. Siefhen, Chem.Ber. 1926, **59**, 1314; (b) H. Lecher and W. Siefhen, *Chem.Ber.* 1926, **59**, 2594.
- 4 N.N. Makhora, G.A. Karpov, A.N. Mikhailyuk, A.E. Bova, L.I. Khmel'nitskii and S.S. Novikov, *lzv. Akad.Nauk SSSR, Ser. Khim.* 1978, **1**, 226.
- 5 S.K. Chang, G.W. Hrrington, M. Rothstein, W.A. Shergalis, D. Swern, S.K. Vohra, *Cancer Res.* 1979, **39**, 3871.
- 6 L. Castedo, R. Riguera and M.P. Vázquez, J. Chem. Soc. Chem. Commun. 1983, 301.
- 7 M. Nakajima, J.C. Warner, J.P. Anselme, *Tetrahedron Lett.* 1984, 25, 2619.
- 8 J.C. Fanning, L.K. Keefer, K. Larry, J. Chem. Soc. Chem. Commun. 1987, 955.
- 9 M.A. Zolfigol, Synth. Commun. 1999, 29, 905.
- 10 M.A. Zolfigol, E. Ghaemi, E. Madrakian, M. Kiany-Borazjani, Synth. Commun. 2000, 30, 2057.
- 11 M.A. Zolfigol, F. Shirini, A. Ghorbani Choghamarani, A. Taqiannasab, H. Keypour, S. Salehzadeh, J. Chem. Res. (S) 2000, 420.
- 12 M.A. Zolfigol, M.H. Zebarjadian, G. Chehardoli, H. Keypour, S. Salehzadeh and M. Shamsipur, J. Org. Chem. 2001, 66, 3619.
- 13 M.A. Zolfigol, F. Shirini, A.G. Choghamarani, Synth. Commun. 2002, 32, 1809.
- 14 X.CH. Li, Y.L. Wang, J.Y. Wang, J. Chem. Res. (S) 2002, 284.
- 15 I. Heilbron and H.M. Bunbury, Dictionary of Organic Compounds, London, 1953
- 16 NMR spectra, Sadlter Research Laboratories, Inc., 1974, 28–30, 19135M.